Package: spacetools (via r-universe)

August 27, 2024

Title Easy Spatial Tools for R

Version 0.0.0.9000

Description Provide a series of functions designed to make complicated spatial operations in R much easier. Applications are focused on aquatic distance related uses, with built in functionality for the Sacramento San Joaquin Delta. Users can calculate in-water distances between points, move points outside a shapefile to the closest location within the shapefile, and cluster points within a given radius. More functions will be added in the future.

License GPL-3

Depends R (>= 3.5.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports lwgeom, magrittr, dplyr, igraph, gdistance, raster, rlang, sf, tibble, stars, methods, graphics, tidyr, stats

URL https://github.com/sbashevkin/spacetools

BugReports https://github.com/sbashevkin/spacetools/issues

Language en-US

Suggests testthat (>= 2.1.0), spelling, covr

Repository https://sbashevkin.r-universe.dev

RemoteUrl https://github.com/sbashevkin/spacetools

RemoteRef HEAD

RemoteSha b9ac9f56f65e0583b774cb76890615f219325697

Contents

Delta .	 	 •																							2
GGdist	 	 •						•	•	•			•		•		•	•	•		•	•	•		3

Delta

12

Maptransitioner	4
Pointcluster	5
Pointmover	7
spacetools	8
Stations	9
Waterdist	10

Index

Delta

Delta shapefile

Description

Shapefile of delta waterways

Usage

Delta

Format

a sf tibble with 282 rows and 10 columns.

AREA Area.

PERIMETER Perimeter. HYDRO_POLY HYDRO_POLY. HYDRO_PO_1 HYDRO_PO_1. HYDRO_24K_ HYDRO_24K_. HNAME HNAME. Shape_Leng Shape_Length Shape_Area Shape_Area. geometry Shapefile polygon coordinates. GGdist

Description

Calculate a distance matrix for a set of points based on in-water distances, using a raster-based approach.

Usage

```
GGdist(
  Water_map,
  Points,
  EndPoint = NULL,
  Latitude_column,
  Longitude_column,
  PointID_column,
  Points_crs = 4326,
  Water_map_transitioned = NULL,
  Calculation_crs = 32610,
  Grid_size = 75
)
```

Arguments

Water_map	Object of class sf representing a map of all waterways in your region of interest				
Points	A dataframe of points with latitude and longitude which you would like to cal- culate distance to a given reference point.				
EndPoint	A dataframe containing a single point with latitude and longitude. Defaults to a point 92 m East of the Golden Gate (37.819539, -122.477). Latitude and longitude column names must be the same as the points data frame. This point must fall within the bounds of the Water_map.				
Latitude_colum	n				
	The unquoted name of the column in the Points and EndPoint dataframe representing Latitude.				
Longitude_column					
	The unquoted name of the column in the Points and EndPoint dataframe representing Longitude.				
PointID_column	The unquoted name of the column in the Points dataframe with the unique identifier of each point.				
Points_crs	Coordinate reference system for your Points dataframe. Integer with the EPSG code or character with proj4string.				
Water_map_transitioned					
	A rasterized, transitioned, and geo-corrected version of the water map. This is optional to save time if you will be running this function frequently with the same base map.				

Calculation_crs	
	Coordinate reference system used for the calculation. If a latitude/longitude system are used, errors may be returned since some calculations assume a planar surface. Defaults to Calculation_crs = 32610.
Grid_size	Grid size (in meters) used to rasterize the map. Defaults to 75.

Value

A tibble with 1 column for the PointID_column values and another with the distances from the EndPoint.

See Also

Maptransitioner Pointmover

Examples

library(tibble)

Not run:

```
distance<GGdist(Water_map = spacetools::Delta, Points = Points, Latitude_column = Latitude,
        Longitude_column = Longitude, PointID_column = ID)
```

```
# Including a pre-transitioned map to save time.
# See Maptransitioner for creating this pre-transitioned map.
```

```
distance<-GGdist(Water_map = spacetools::Delta, Points = Points, Latitude_column = Latitude,
        Longitude_column = Longitude, PointID_column = ID,
        Water_map_transitioned = Delta_transitioned)
```

End(Not run)

Maptransitioner Rasterize and transition a shapefile

Description

Rasterize and transition a shapefile for input into Waterdist

Pointcluster

Usage

```
Maptransitioner(
  Water_map,
  Calculation_crs = 32610,
  Grid_size = 75,
  Process_map = TRUE,
  Plot = FALSE
)
```

Arguments

Water_map	Object of class sf representing a map of all waterways in your region of interest					
Calculation_crs						
	Coordinate reference system used for the calculation. If a latitude/longitude system are used, errors may be returned since some calculations assume a planar surface. Defaults to Calculation_crs = 32610.					
Grid_size	Grid size (in meters) used to rasterize the map. Defaults to 75.					
Process_map	Should the Water_map be processed by unioning all features and transforming to the Calculation_crs? This should almost always be set to TRUE, the default.					
Plot	Should the rasterized map be plotted for inspection?					

Value

A rasterized, transitioned, and geo-corrected map.

See Also

Waterdist

Examples

```
## Not run:
Map <- Maptransitioner(spacetools::Delta)</pre>
```

End(Not run)

Pointcluster

Cluster nearby points

Description

Cluster points within a given distance of one another

Usage

```
Pointcluster(
   Points,
   Distance,
   In_water_distance = FALSE,
   Latitude_column,
   Longitude_column,
   PointID_column,
   Points_crs = 4326,
   Calculation_crs = 32610,
   Water_map = NULL,
   Water_map_transitioned = NULL,
   Grid_size = 75,
   Expand = TRUE
)
```

Arguments

Points	A dataframe of points with latitude and longitude
Distance	Clustering distance in meters.

In_water_distance

Should clustering be based on in-water distance? If yes, in-water distances will be calculated with Waterdist and this function will be slower. NOTE: For in-water distances, any points outside the Water_map shapefile polygons will be moved inside before distances are calculated for clustering. The parameters Water_map, Water_map_transitioned and Grid_size will be ignored unless In_water_distance = TRUE.

Latitude_column

The unquoted name of the column in the Points dataframe representing Latitude.

Longitude_column

The unquoted name of the column in the Points dataframe representing Longitude.

- PointID_column The unquoted name of the column in the Points dataframe with the unique identifier of each point.
- Points_crs Coordinate reference system for your Points dataframe. Integer with the EPSG code or character with proj4string.

Calculation_crs

Coordinate reference system used for the calculation. If a latitude/longitude system are used, errors may be returned since some calculations assume a planar surface. Defaults to Calculation_crs = 32610.

Water_map Object of class sf representing a map of all waterways in your region of interest Water_map_transitioned

A rasterized, transitioned, and geo-corrected version of the water map. This is optional to save time if you will be running this function frequently with the same base map.

6

Pointmover

Grid_size	Grid size (in meters) used to rasterize the map. Defaults to 75.
Expand	Should data be expanded at the end? If TRUE (the default), the result will be expanded so there is 1 row per unique value of the PointID_column. If FALSE, the returned object will have 1 row per cluster and a list column with the names of each PointID_column value contained in each cluster.

Details

The parameters Water_map, Water_map_transitioned and Grid_size will be ignored unless In_water_distance = TRUE.

Value

A tibble relating each point to its assigned cluster. The returned Latitude and Longitude values represent the mean values across all points in each cluster.

Examples

Pointmover

Move points within a shapefile

Description

Move points to closest location within shapefile

Usage

Pointmover(Data, Attribute, Shapefile)

Arguments

Data	Dataframe of points with sf geometry column and an attribute column with NAs for points that need to be moved.
Attribute	Name of the column in Data that indicates points that need to be moved (by the presence of NAs)
Shapefile	Object of class sf representing the shapefile you want all points to fall within.

See Also

Waterdist

Examples

```
## Not run:
library(tibble)
library(dplyr)
library(sf)
Points <- tibble(Latitude = c(38.23333, 38.04813, 38.05920,
                              37.94900, 38.23615, 38.47387),
                 Longitude = c(-121.4889, -121.9149, -121.8684,
                               -121.5591, -121.6735, -121.5844),
                 ID = c("EMP NZP02", "FMWT 508", "FMWT 513",
                        "FMWT 915", "FMWT 723", "FMWT 796"))%>%
st_as_sf(coords=c("Longitude", "Latitude"), crs=4326)%>%
  st_transform(crs=32610)
Map <- st_union(spacetools::Delta)%>%
st_as_sf()%>%
  mutate(Inside=TRUE)%>%
  rename(geometry = x)%>%
  st_transform(crs=32610)
Points_joined <- st_join(Points, Map, join = st_intersects)</pre>
Points_fixed<-Pointmover(Points_joined, Inside, Map)</pre>
## End(Not run)
```

spacetools

spacetools: Easy spatial tools for R

Description

This package contains functions for easy spatial operations in R, focused on aquatic distance related applications. Internal datasets for the Sacramento San Joaquin Delta are also included to make operations very easy for this location.

Stations

Functions

- Waterdist
- Pointmover
- Maptransitioner
- Pointcluster

Internal datasets

- Delta
- Stations

Stations

Zooplankton sampling stations

Description

Zooplankton sampling stations in the Sacramento San Joaquin Delta from the zooper package.

Usage

Stations

Format

a tibble with 362 rows and 3 columns

Station Sampling station name

Latitude Latitude in decimal degrees

Longitude Longitude in decimal degrees

See Also

zooper

Waterdist

Description

Calculate a distance matrix for a set of points based on in-water distances, using a raster-based approach

Usage

```
Waterdist(
  Water_map,
  Points,
  Latitude_column,
  Longitude_column,
  PointID_column,
  Points_crs = 4326,
  Water_map_transitioned = NULL,
  Calculation_crs = 32610,
  Grid_size = 75
)
```

Arguments

Water_map	Object of class sf representing a map of all waterways in your region of interest						
Points	A dataframe of points with latitude and longitude						
Latitude_column							
	The unquoted name of the column in the Points dataframe representing Lati- tude.						
Longitude_colum	in						
	The unquoted name of the column in the Points dataframe representing Longi- tude.						
PointID_column	The unquoted name of the column in the Points dataframe with the unique identifier of each point.						
Points_crs	Coordinate reference system for your Points dataframe. Integer with the EPSG code or character with proj4string.						
Water_map_transitioned							
	A rasterized, transitioned, and geo-corrected version of the water map. This is optional to save time if you will be running this function frequently with the same base map.						
Calculation_crs							
	Coordinate reference system used for the calculation. If a latitude/longitude system are used, errors may be returned since some calculations assume a planar surface. Defaults to Calculation_crs = 32610.						
Grid_size	Grid size (in meters) used to rasterize the map. Defaults to 75.						

Waterdist

Value

Distance matrix.

See Also

Maptransitioner Pointmover

Examples

library(tibble)

Not run:

Including a pre-transitioned map to save time. # See Maptransitioner for creating this pre-transitioned map.

```
distance<-Waterdist(Water_map = spacetools::Delta, Points = Points, Latitude_column = Latitude,
        Longitude_column = Longitude, PointID_column = ID,
        Water_map_transitioned = Delta_transitioned)
```

End(Not run)

Index

* datasets Delta,2 Stations, 9 * distance GGdist, 3 Waterdist, 10 * raster GGdist, 3 Waterdist, 10 * spatial GGdist, 3 Waterdist, 10 * water GGdist, 3 Waterdist, 10 Delta, 2, 9 GGdist, 3 Maptransitioner, 4, 4, 9, 11 Pointcluster, 5, 9 Pointmover, *4*, *7*, *9*, *11* spacetools, 8 Stations, 9, 9 Waterdist, 4-6, 8, 9, 10